Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Health Sci Rep ; 6(4): e1213, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2300667

ABSTRACT

Background and Aims: The coronavirus disease 2019 (COVID-19) has brought serious threats to public health worldwide. Nasopharyngeal, nasal swabs, and saliva specimens are used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, limited data are available on the performance of less invasive nasal swab for testing COVID-19. This study aimed to compare the diagnostic performance of nasal swabs with nasopharyngeal swabs using real-time reverse transcription polymerase chain reaction (RT-PCR) considering viral load, onset of symptoms, and disease severity. Methods: A total of 449 suspected COVIDCOVID-19 individuals were recruited. Both nasopharyngeal and nasal swabs were collected from the same individual. Viral RNA was extracted and tested by real-time RT-PCR. Metadata were collected using structured questionnaire and analyzed by SPSS and MedCalc software. Results: The overall sensitivity of the nasopharyngeal swab was 96.6%, and the nasal swab was 83.4%. The sensitivity of nasal swabs was more than 97.7% for low and moderate C t values. Moreover, the performance of nasal swab was very high (>87%) for hospitalized patients and at the later stage >7 days of onset of symptoms. Conclusion: Less invasive nasal swab sampling with adequate sensitivity can be used as an alternative to nasopharyngeal swabs for the detection of SARS-CoV-2 by real-time RT-PCR.

3.
Microbiol Spectr ; : e0199822, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2137461

ABSTRACT

Accurate and early diagnoses are prerequisites for prompt treatment. For coronavirus disease 2019 (COVID-19), it is even more crucial. Currently, choice of methods include rapid diagnostic tests and reverse transcription polymerase chain reaction (RT-PCR) using samples mostly of respiratory origin and sometimes saliva. We evaluated two rapid diagnostic tests with three specimen types using viral transport medium (VTM) containing naso-oropharyngeal (NOP) swabs, direct nasal and direct nasopharyngeal (NP) samples from 428 prospective patients. We also performed RT-PCR for 428 NOP VTM and 316 saliva samples to compare results. The sensitivity of the SD Biosensor Standard Q COVID-19 antigen (Ag) test kit drastically raised from an average of 65.55% (NOP VTM) to 85.25% (direct nasal samples), while RT-PCR was the gold standard. For the CareStart kit, the sensitivity was almost similar for direct NP swabs; the average was 84.57%. The specificities were ≥95% for both SD Biosensor Standard Q and CareStart COVID-19 Ag tests in all platforms. The kits were also able to detect patients with different variants as well. Alternatively, RT-PCR results from saliva and NOP VTM samples showed high sensitivities of 96.45% and 95.48% with respect to each other as standard. The overall results demonstrated high performance of the rapid tests, indicating the suitability for regular surveillance at clinical facilities when using direct nasal or direct NP samples rather than NOP VTM. Additionally, the analysis also signifies not showed that RT-PCR of saliva can be used as an choice of method to RT-PCR of NOP VTM, providing an easier, non-invasive sample collection method. IMPORTANCE There are several methods for the diagnosis of coronavirus disease 2019 (COVID-19), and the choice of methods depends mostly on the resources and level of sensitivity required by the user and health care providers. Still, reverse transcription polymerase chain reaction (RT-PCR) has been chosen as the best method using direct naso-oropharyngeal swabs. There are also other methods of fast detection, such as rapid diagnostic tests (RDTs), which offer result within 15 to 20 min and have become quite popular for self-testing and in the clinical setting. The major drawback of the currently used RT-PCR method is compliance, as it may cause irritation, and patients often refuse to test in such a way. RDTs, although inexpensive, suffer from low sensitivity due to technical issues. In this article, we propose saliva as a noninvasive source for RT-PCR samples and evaluate various specimen types at different times after infection for the best possible output from COVID-19 rapid tests.

4.
Heliyon ; 8(10): e11043, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2113687

ABSTRACT

Epidemiological data of specific respiratory pathogens from the pre-COVID-19 period are essential to determine the effects of the COVID-19 pandemic on other respiratory infections. In this study, we revealed the pre-COVID-19 molecular epidemiology of respiratory syncytial virus (RSV) among children in Bangladesh. We tested 3170 samples collected from 2008 to 2012 for a panel of respiratory viruses; RSV, human metapneumovirus (hMPV), human parainfluenza viruses (hPIV) 1, 2, 3, and adenovirus. Five hundred fifty-five samples (17.5 %) were positive for RSV, including 2.5% having co-infections with other viruses. Genotypic characterization of RSV showed that RSV-A (82%) contributed more acute respiratory infections than RSV-B (18%). Clinical features were similar with RSV-A and RSV-B infections. However, children with RSV-B were more likely to have upper respiratory infections (URI) (10% vs. 29%, p = 0.03). Among RSV-A cases, hospitalization was higher for ON1 cases (25%, ON1 vs. 8%, NA1, p = 0.04), whereas the recovery without a disability was higher among the NA1 cases (56%, ON1 vs. 88%, NA1, p = 0.02). The time to the most recent common ancestor (TMRCA) for RSV in Bangladesh was 1949 for RSV-A and 1944 for RSV-B. This study revealed the genotypic diversity and evolutionary relatedness of RSV strains in Bangladesh and provided pre-COVID molecular epidemiology data to understand better the COVID-19 impact on upcoming RSV epidemiology in Bangladesh.

5.
Sci Rep ; 12(1): 1438, 2022 01 26.
Article in English | MEDLINE | ID: covidwho-1655618

ABSTRACT

The protection against emerging SARS-CoV-2 variants by pre-existing antibodies elicited due to the current vaccination or natural infection is a global concern. We aimed to investigate the rate of SARS-CoV-2 infection and its clinical features among infection-naïve, infected, vaccinated, and post-infection-vaccinated individuals. A cohort was designed among icddr,b staff registered for COVID-19 testing by real-time reverse transcriptase-polymerase chain reaction (rRT-PCR). Reinfection cases were confirmed by whole-genome sequencing. From 19 March 2020 to 31 March 2021, 1644 (mean age, 38.4 years and 57% male) participants were enrolled; where 1080 (65.7%) were tested negative and added to the negative cohort. The positive cohort included 750 positive patients (564 from baseline and 186 from negative cohort follow-up), of whom 27.6% were hospitalized and 2.5% died. Among hospitalized patients, 45.9% had severe to critical disease and 42.5% required oxygen support. Hypertension and diabetes mellitus were found significantly higher among the hospitalised patients compared to out-patients; risk ratio 1.3 and 1.6 respectively. The risk of infection among positive cohort was 80.2% lower than negative cohort (95% CI 72.6-85.7%; p < 0.001). Genome sequences showed that genetically distinct SARS-CoV-2 strains were responsible for reinfections. Naturally infected populations were less likely to be reinfected by SARS-CoV-2 than the infection-naïve and vaccinated individuals. Although, reinfected individuals did not suffer severe disease, a remarkable proportion of naturally infected or vaccinated individuals were (re)-infected by the emerging variants.


Subject(s)
COVID-19/pathology , Reinfection/epidemiology , Adult , COVID-19/complications , COVID-19/virology , Cohort Studies , Diabetes Complications/pathology , Female , Humans , Hypertension/complications , Male , Middle Aged , RNA, Viral/analysis , RNA, Viral/metabolism , Reinfection/diagnosis , Reinfection/virology , Risk , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , SARS-CoV-2/physiology , Severity of Illness Index , Vaccination/statistics & numerical data
6.
Front Microbiol ; 12: 792514, 2021.
Article in English | MEDLINE | ID: covidwho-1581270

ABSTRACT

Background: The emergence of novel variants has been a great deal of international concern since the recently published data suggest that previous infections with SARS-CoV-2 may not protect an individual from new variants. We report a patient had two distinct episodes of COVID-19 with different variants of SARS-CoV-2. Methods: The nasopharyngeal samples collected from the two episodes were subjected to whole-genome sequencing and comparative genome analysis. Results: The first infection presented with mild symptoms, while the second infection presented with severe outcomes which occurred 74 days after the patient recovered from the first episode. He had elevated C-reactive protein, ferritin, and bilateral consolidation as a sign of acute infection. Genome analysis revealed that the strains from the first and second episodes belonged to two distinct Nexstrain clades 20B and 20I and Pangolin lineages B.1.1.25 and B.1.1.7, respectively. A total of 36 mutations were observed in the episode-2 strain when compared with the reference strain Wuhan-Hu-1. Among them, eight mutations were identified in the receptor-binding domain (RBD). Conclusion: Our findings concern whether the immunity acquired by natural infection or mass vaccination could confer adequate protection against the constantly evolving SARS-CoV-2. Therefore, continuous monitoring of genetic variations of SARS-CoV-2 strains is crucial for interventions such as vaccine and drug designs, treatment using monoclonal antibodies, and patient management.

7.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: covidwho-1576960

ABSTRACT

Canine coronavirus (CCoV) is widespread among the dog population and causes gastrointestinal disorders, and even fatal cases. As the zoonotic transmission of viruses from animals to humans has become a worldwide concern nowadays, it is necessary to screen free-roaming dogs for their common pathogens due to their frequent interaction with humans. We conducted a cross-sectional study to detect and characterize the known and novel Corona, Filo, Flavi, and Paramyxoviruses in free-roaming dogs in Bangladesh. Between 2009-10 and 2016-17, we collected swab samples from 69 dogs from four districts of Bangladesh, tested using RT-PCR and sequenced. None of the samples were positive for Filo, Flavi, and Paramyxoviruses. Only three samples (4.3%; 95% CI: 0.9-12.2) tested positive for Canine Coronavirus (CCoV). The CCoV strains identified were branched with strains of genotype CCoV-II with distinct distances. They are closely related to CCoVs from the UK, China, and other CoVs isolated from different species, which suggests genetic recombination and interspecies transmission of CCoVs. These findings indicate that CCoV is circulating in dogs of Bangladesh. Hence, we recommend future studies on epidemiology and genetic characterization with full-genome sequencing of emerging coronaviruses in companion animals in Bangladesh.


Subject(s)
Coronavirus Infections/veterinary , Coronavirus, Canine/genetics , Coronavirus, Canine/isolation & purification , Dog Diseases/epidemiology , Animals , Bangladesh/epidemiology , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Coronavirus, Canine/classification , Cross-Sectional Studies , Dog Diseases/virology , Dogs , Female , Genotype , Male , Phylogeny , Viral Proteins/genetics
8.
Int J Infect Dis ; 114: 105-111, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1587637

ABSTRACT

OBJECTIVES: The democratization of diagnostics is one of the key challenges towards containing the transmission of coronavirus disease 2019 (COVID-19) around the globe. The operational complexities of existing PCR-based methods, including sample transfer to advanced central laboratories with expensive equipment, limit their use in resource-limited settings. However, with the advent of isothermal technologies, the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is possible at decentralized facilities. METHODS: In this study, two recombinase-based isothermal techniques, reverse transcription recombinase polymerase amplification (RT-RPA) and reverse transcription recombinase-aided amplification (RT-RAA), were evaluated for the detection of SARS-CoV-2 in clinical samples. A total of 76 real-time reverse transcription PCR (real-time RT-PCR) confirmed COVID-19 cases and 100 negative controls were evaluated to determine the diagnostic performance of the isothermal methods. RESULTS: This investigation revealed equally promising diagnostic accuracy of the two methods, with a sensitivity of 76.32% (95% confidence interval 65.18-85.32%) when the target genes were RdRP and ORF1ab for RT-RPA and RT-RAA, respectively; the combination of N and RdRP in RT-RPA augmented the accuracy of the assay at a sensitivity of 85.53% (95% confidence interval 75.58-92.55%). Furthermore, high specificity was observed for each of the methods, ranging from 94.00% to 98.00% (95% confidence interval 87.40-9.76%). CONCLUSIONS: Considering the diagnostic accuracies, both RT-RPA and RT-RAA appear to be suitable assays for point-of-need deployment for the detection of the pathogen, understanding its epidemiology, case management, and curbing transmission.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Nucleic Acid Amplification Techniques , RNA, Viral/genetics , Recombinases/metabolism , Reverse Transcription , Sensitivity and Specificity
9.
Diagnostics (Basel) ; 11(12)2021 Dec 08.
Article in English | MEDLINE | ID: covidwho-1554977

ABSTRACT

Accurate diagnosis at the right moment is the prerequisite for treatment of any disease. Failure to correctly diagnose a disease can result in highly detrimental effects, unmistakably a crucial factor during the COVID-19 pandemic. RT-PCR is the gold standard for COVID-19 detection while there are other test procedures available, such as LAMP, X-Ray, and ELISA. However, these tests are expensive, require sophisticated equipment and a highly trained workforce, and multiple hours or even days are often required to obtain the test results. A rapid and cheap detection system can thus render a solution to the screening system on a larger scale and be added as an aid to the current detection processes. Recently, some rapid antigen-based COVID-19 tests devices have been developed and commercialized. In this study, we evaluated the clinical performance of a new rapid detection device (OnSite® COVID-19 Ag Rapid Test by CTK Biotech Inc., Poway, CA, USA) on COVID-19 symptomatic patients (n = 380). The overall sensitivity and specificity were 91.0% (95% CI: 84.8-95.3%) and 99.2% (95% CI: 97.1-99.9), against gold standard RT-PCR. The kit was capable of detecting patients even after 06 days of onset of symptoms and the sensitivity can be maximized to 98% in samples with an average RT-PCR Ct ≤ 26.48, demonstrating a high potential of the kit for clinical diagnosis of symptomatic patients in healthcare facilities.

10.
Heliyon ; 7(11): e08455, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1525795

ABSTRACT

The rapid and early detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections is key to control the current Coronavirus disease 2019 (COVID-19) pandemic. The present study was conducted to clinically evaluate a rapid diagnostic test (RDT) kit, Standard Q COVID-19 Ag Test (SD Biosensor®, Republic of Korea), with reference to the standard real-time RT-PCR for detection of COVID-19 cases in Bangladesh. Nasopharyngeal swabs were taken from 900 COVID-19 suspected patients. Among them, 34.11% (n = 307) were diagnosed as COVID-19 cases by RT-PCR assay, of which 85% (n = 261) were also detectable using the RDT. The overall sensitivity and specificity of the RDT compared to RT-PCR were 85.02% and 100%, respectively, regardless of age, sex, and type of SARS-CoV-2 variants. Most of the RT-PCR positive cases (94%) were found within the first five days of disease onset, and the sensitivity of RDT was 85.91% for the same samples. The positive predictive value (PPV) of the RDT was 100%, and the negative predictive value (NPV) was 92.8%. The Cohen's kappa value of 0.882 indicated excellent agreement between the RDT and RT-PCR assays. The findings of this study showed the potential use of SARS-CoV-2 antigen-based RDT to expedite the diagnostic process and onward COVID-19 management in Bangladesh.

12.
Microbiol Spectr ; 9(3): e0046821, 2021 12 22.
Article in English | MEDLINE | ID: covidwho-1501551

ABSTRACT

Coronavirus disease 19 (COVID-19)-caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-has spread rapidly around the world. The global shortage of equipment and health care professionals, diagnostic cost, and difficulty in collecting nasopharyngeal swabs (NPSs) necessitate the use of an alternative specimen type for SARS-CoV-2 diagnosis. In this study, we investigated the use of saliva as an alternative specimen type for SARS-CoV-2 detection. Participants presenting COVID-19 symptoms and their contacts were enrolled at the COVID-19 Screening Unit of Dhaka Hospital of the International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), from July to November 2020. Paired NPS and saliva specimens were collected from each participant. Reverse transcription-quantitative PCR (RT-qPCR) was performed to detect SARS-CoV-2. Of the 596 suspected COVID-19-positive participants, 231 (38.7%) were detected as COVID-19 positive by RT-qPCR from at least 1 specimen type. Among the positive cases, 184 (79.6%) patients were identified to be positive for SARS-CoV-2 based on NPS and saliva samples, whereas 45 (19.65%) patients were positive for SARS-CoV-2 based on NPS samples but negative for SARS-CoV-2 based on the saliva samples. Two (0.5%) patients were positive for SARS-CoV-2 based on saliva samples but negative for SARS-CoV-2 based on NPS samples. The sensitivity and specificity of the saliva samples were 80.3% and 99.4%, respectively. SARS-CoV-2 detection was higher in saliva (85.1%) among the patients who visited the clinic after 1 to 5 days of symptom onset. A lower median cycle threshold (CT) value indicated a higher SARS-CoV-2 viral load in NPS than that in saliva for target genes among the positive specimens. The study findings suggest that saliva can be used accurately for diagnosis of SARS-CoV-2 early after symptom onset in clinical and community settings. IMPORTANCE As the COVID-19 pandemic erupted, the WHO recommended the use of nasopharyngeal or throat swabs for the detection of SARS-CoV-2 etiology of COVID-19. The collection of NPS causes discomfort because of its invasive collection procedure. There are considerable risks to health care workers during the collection of these specimens. Therefore, an alternative, noninvasive, reliable, and self-collected specimen was explored in this study. This study investigated the feasibility and suitability of saliva versus NPS for the detection of SARS-CoV-2. Here, we showed that the sensitivity of saliva specimens was 80.35%, which meets the WHO criteria. Saliva is an easy-to-get, convenient, and low-cost specimen that yields better results if it is collected within the first 5 days of symptom onset. Our study findings suggest that saliva can be used in low-resource countries, community settings, and vulnerable groups, such as children and elderly people.


Subject(s)
COVID-19 Testing/methods , COVID-19/diagnosis , Nasopharynx/virology , SARS-CoV-2/isolation & purification , Saliva/virology , Specimen Handling/methods , Adult , Bangladesh , Diagnostic Tests, Routine , Humans , Male , Mass Screening , Middle Aged , Pandemics , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity
13.
Microbiol Resour Announc ; 10(42): e0091221, 2021 Oct 21.
Article in English | MEDLINE | ID: covidwho-1483992

ABSTRACT

We announce the complete genome sequences of 12 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sublineage B.1.617.2 strains (Delta variant) obtained from nasopharyngeal and oropharyngeal swab samples from 12 pediatric patients in Chittagong, Bangladesh, displaying COVID-19 symptoms. Oxford Nanopore MinION sequencing technology was used to generate the genomic sequences.

15.
Microbiol Resour Announc ; 10(21): e0034521, 2021 May 27.
Article in English | MEDLINE | ID: covidwho-1247321

ABSTRACT

We report a coding-complete genome sequence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strain SARS-CoV-2/BGD/GC001, isolated from a Bangladeshi patient with respiratory symptoms. Phylogenetic analysis assigned this strain to lineage B.1.1.7, which presented a total of 36 mutations in the spike and other genomic regions compared to strain Wuhan Hu-1 (GenBank accession number NC_045512.2).

16.
Open Heart ; 8(1)2021 04.
Article in English | MEDLINE | ID: covidwho-1166562

ABSTRACT

OBJECTIVE: We aimed to determine the prevalence and outcome of occult infection with SARS-CoV-2 and influenza in patients presenting with myocardial infarction (MI) without COVID-19 symptoms. METHODS: We conducted an observational study from 28 June to 11 August 2020, enrolling patients admitted to the National Institute of Cardiovascular Disease Hospital, Dhaka, Bangladesh, with ST-segment elevation MI (STEMI) or non-ST-segment elevation MI who did not meet WHO criteria for suspected COVID-19. Samples were collected by nasopharyngeal swab to test for SARS-CoV-2 and influenza virus by real-time reverse transcriptase PCR. We followed up patients at 3 months (13 weeks) postadmission to record adverse cardiovascular outcomes: all-cause death, new MI, heart failure and new percutaneous coronary intervention or stent thrombosis. Survival analysis was performed using the Kaplan-Meier method. RESULTS: We enrolled 280 patients with MI, 79% male, mean age 54.5±11.8 years, 140 of whom were diagnosed with STEMI. We found 36 (13%) to be infected with SARS-CoV-2 and 1 with influenza. There was no significant difference between mortality rate observed among SARS-CoV-2 infected patients compared with non-infected (5 (14%) vs 26 (11%); p=0.564). A numerically shorter median time to a recurrent cardiovascular event was recorded among SARS-CoV-2 infected compared with non-infected patients (21 days, IQR: 8-46 vs 27 days, IQR: 7-44; p=0.378). CONCLUSION: We found a substantial rate of occult SARS-CoV-2 infection in the studied cohort, suggesting SARS-CoV-2 may precipitate MI. Asymptomatic patients with COVID-19 admitted with MI may contribute to disease transmission and warrants widespread testing of hospital admissions.


Subject(s)
COVID-19/epidemiology , Non-ST Elevated Myocardial Infarction/epidemiology , ST Elevation Myocardial Infarction/epidemiology , Undiagnosed Diseases , Adult , Aged , Bangladesh/epidemiology , COVID-19/diagnosis , COVID-19/mortality , Disease Progression , Female , Hospitalization , Humans , Longitudinal Studies , Male , Middle Aged , Non-ST Elevated Myocardial Infarction/diagnosis , Non-ST Elevated Myocardial Infarction/mortality , Non-ST Elevated Myocardial Infarction/therapy , Predictive Value of Tests , Prevalence , Prognosis , Prospective Studies , Recurrence , Risk Assessment , Risk Factors , ST Elevation Myocardial Infarction/diagnosis , ST Elevation Myocardial Infarction/mortality , ST Elevation Myocardial Infarction/therapy , Time Factors
17.
Trop Med Infect Dis ; 6(2)2021 Mar 31.
Article in English | MEDLINE | ID: covidwho-1159330

ABSTRACT

To date, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has infected over 80 million people globally. We report a case series of five clinically and laboratory confirmed COVID-19 patients from Bangladesh who suffered a second episode of COVID-19 illness after 70 symptom-free days. The International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), is a leading public health research institution in South Asia. icddr, b staff were actively tested, treated and followed-up for COVID-19 by an experienced team of clinicians, epidemiologists, and virologists. From 21 March to 30 September 2020, 1370 icddr,b employees working at either the Dhaka (urban) or Matlab (rural) clinical sites were tested for COVID-19. In total, 522 (38%) were positive; 38% from urban Dhaka (483/1261) and 36% from the rural clinical site Matlab (39/109). Five patients (60% male with a mean age of 41 years) had real-time reverse transcription-polymerase chain reaction (rRT-PCR) diagnosed recurrence (reinfection) of SARS-CoV-2. All had mild symptoms except for one who was hospitalized. Though all cases reported fair risk perceptions towards COVID-19, all had potential exposure sources for reinfection. After a second course of treatment and home isolation, all patients fully recovered. Our findings suggest the need for COVID-19 vaccination and continuing other preventive measures to further mitigate the pandemic. An optimal post-recovery follow-up strategy to allow the safe return of COVID-19 patients to the workforce may be considered.

18.
Vet Med Sci ; 7(4): 1199-1210, 2021 07.
Article in English | MEDLINE | ID: covidwho-1111252

ABSTRACT

Zoonotic diseases cause repeated outbreaks in humans globally. The majority of emerging infections in humans are zoonotic. COVID-19 is an ideal example of a recently identified emerging zoonotic disease, causing a global pandemic. Anthropogenic factors such as modernisation of agriculture and livestock farming, wildlife hunting, the destruction of wild animal habitats, mixing wild and domestic animals, wildlife trading, changing food habits and urbanisation could drive the emergence of zoonotic diseases in humans. Since 2001, Bangladesh has been reporting many emerging zoonotic disease outbreaks such as nipah, highly pathogenic avian influenza, pandemic H1N1, and COVID-19. There are many other potential zoonotic pathogens such as Ebola, Middle East respiratory syndrome coronavirus, Kyasanur forest disease virus and Crimean-Congo haemorrhagic fever that may emerge in the future. However, we have a limited understanding of zoonotic diseases' overall risk in humans and associated factors that drive the emergence of zoonotic pathogens. This narrative review summarised the major emerging, re-emerging, neglected and other potential zoonotic diseases in Bangladesh and their associated risk factors. Nipah virus and Bacillus anthracis caused repeated outbreaks in humans. More than 300 human cases with Nipah virus infection were reported since the first outbreak in 2001. The highly pathogenic avian influenza virus (H5N1) caused more than 550 outbreaks in poultry, and eight human cases were reported so far since 2007. People of Bangladesh are frequently exposed to zoonotic pathogens due to close interaction with domestic and peri-domestic animals. The rapidly changing intensified animal-human-ecosystem interfaces and risky practices increase the risk of zoonotic disease transmission. The narrative review's findings are useful to draw attention to the risk and emergence of zoonotic diseases to public health policymakers in Bangladesh and the application of one-health approach to address this public health threat.


Subject(s)
COVID-19/epidemiology , Zoonoses/epidemiology , Animals , Bangladesh/epidemiology , COVID-19/classification , Communicable Diseases, Emerging/classification , Communicable Diseases, Emerging/epidemiology , Humans , One Health , Risk Factors , Zoonoses/classification
19.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1105405

ABSTRACT

The coding-complete genome sequence of a coronavirus strain, SARS-CoV-2/human/BGD/G039392/2021, obtained from a symptomatic male patient with coronavirus disease 2019 (COVID-19) in Dhaka, Bangladesh, is reported. The strain G039392 is 99.9% identical to the UK variant B.1.1.7.

SELECTION OF CITATIONS
SEARCH DETAIL